Abstract
A series of nanoscale chemical patterning methods based on soft and hybrid nanolithographies have been characterized using scanning electron microscopy with corroborating evidence from scanning tunneling microscopy and lateral force microscopy. We demonstrate and discuss the unique advantages of the scanning electron microscope as an analytical tool to image chemical patterns of molecules highly diluted within a host self-assembled monolayer and to distinguish regions of differential mass coverage in patterned self-assembled monolayers. We show that the relative contrast of self-assembled monolayer patterns in scanning electron micrographs depends on the operating primary electron beam voltage, monolayer composition, and monolayer order, suggesting that secondary electron emission and scattering can be used to elucidate chemical patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.