Abstract

Studies of the effects of carbon dioxide (CO2) lasers on dental enamel have demonstrated that surface changes can be produced at low fluences (< 10 J/cm2) if wavelengths are used which are efficiently absorbed by the hard tissues. In this study, scanning electron microscopy (SEM) was used to characterize the wavelength dependence of surface changes in dental enamel after exposure to an extensive range of CO2 laser conditions. Bovine and human enamel were irradiated by a tunable, pulsed CO2 laser (9.3, 9.6, 10.3, 10.6 microns), with 5, 25, or 100 pulses, at absorbed fluences of 2, 5, 10, or 20 J/cm2, and pulse widths of 50, 100, 200, 500 microseconds. SEM micrographs revealed evidence of melting, crystal fusion, and exfoliation in a wavelength-dependent manner. Crystal fusion occurred at absorbed fluences as low as 5 J/cm2 per pulse at 9.3, 9.6, and 10.3 microns, in contrast to no crystal fusion at 10.6 microns (< or = 20 J/cm2). Longer pulses at constant fluence conditions decreased the extent of surface melting and crystal fusion. The total number of laser pulses delivered to the tissue did not significantly affect surface changes as long as a minimum of 5 to 10 pulses was used. Within the four easily accessible wavelengths of the CO2 laser, there are dramatic differences in the observed surface changes of dental hard tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.