Abstract
Hydrogen adsorption and desorption at polycrystalline platinum electrodes in a neutral Na 2SO 4 solution were studied with a scanning electrochemical microscope. Experiments were carried out with the tip-substrate voltammetry mode, where the faradaic current flowing to the tip is recorded while cycling the potential of the substrate, and with the tip-substrate chronoamperometry mode, where the tip faradaic current is recorded as a function of time following the application of a potential step to the substrate. The tip current was made pH sensitive by holding the tip potential in a region where a pH-dependent reaction occurs. Proton reduction was used to monitor pH decrease, whereas platinum oxide formation was selected to detect pH increase. The results showed that a transient pH decrease as high as 2.3 pH units exists during hydrogen desorption and that a great pH increase occurs during hydrogen adsorption. The mechanisms of hydrogen adsorption and desorption were analysed by comparing tip current vs. substrate potential curves, which reflect the exchange of H + between the adsorbed layer and the solution, with substrate current vs. substrate potential curves, which reflect the exchange of electrons between the adsorbed layer and the electrode. New conclusions have been drawn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.