Abstract

Local electrochemical impedance spectroscopy (LEIS) has been a versatile technology for characterizing local complex electrochemical processes at heterogeneous surfaces. However, further application of this technology is restricted by its poor spatial resolution. In this work, high-spatial-resolution LEIS was realized using scanning electrochemical cell microscopy (SECCM-LEIS). The spatial resolution was proven to be ∼180 nm based on experimental and simulation results. The stability and reliability of this platform were further verified by long-term tests and Kramers-Kronig transformation. With this technology, larger electric double-layer capacitance (Cdl) and smaller interfacial resistance (Rt) were observed at the edges of N-doped reduced graphene oxide, as compared to those at the planar surface, which may be due to the high electrochemical activity at the edges. The established SECCM-LEIS provides a high-spatial approach for study of the interfacial electrochemical behavior of materials, which can contribute to the elucidation of the electrochemical reaction mechanism at material surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call