Abstract

The ions in a fluid element oscillating under the effect of a sound wave in the presence of a magnetic field are submitted to Lorentz force. This gives rise to a bulk current density proportional to the medium's electric conductivity. In the present study, the integrality of this interaction current was collected using a pair of plane electrodes located on opposite sides of the sample. A focused transducer produced ultrasound bursts of 10 micros duration, 500 kHz frequency and 1.5 MPa peak pressure. The magnetic field was created by a purpose-built 0.35 T permanent magnet. Wiener inverse filtering was used to retrieve the system response from the recorded waveforms. The final signal was shown to be proportional to the gradient of sigma/rho along ultrasound propagation axis. Electric conductivity, sigma, predominantly controls this parameter since mass density, rho, does not vary in great proportions in biological media. Rectangular blocks of Agar gel and a layered bacon sample were used as models of biological media. The signals obtained in gel blocks had a longitudinal spatial resolution better than 1 mm. The successive layers of the bacon sample were clearly resolved. The advantages of this new modality for tissue characterization include the permeability of body tissue to magnetic field and ultrasound, the harmlessness of the applied fields and the improved spatial resolution in the measurement of a tissue's electric conductivity distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.