Abstract

Scanning probe microscopy using nitrogen vacancy (NV) centers in diamond has become a versatile tool with applications in physics, chemistry, life sciences, and earth and planetary sciences. However, the fabrication of diamond scanning probes with high photon collection efficiency, NV centers with long coherence times, and integrated radio frequency (RF) remains challenging due to the small physical dimensions of the probes and the complexity of the fabrication techniques. In this work, we present a simple and robust method to reliably fabricate probes that can be integrated with conventional quartz tuning fork based sensors as well as commercial silicon AFM cantilevers. An integrated RF micro-antenna for NV center spin manipulation is directly fabricated onto the probe making the design versatile and compatible with virtually all AFM instruments. This integration marks a complete sensor package for NV center-based magnetometry and opens up this scanning probe technique to the broader scientific community.

Highlights

  • centers in diamond has become a versatile tool with applications in physics

  • robust method to reliably fabricate probes that can be integrated with conventional quartz tuning fork based sensors

  • An integrated radio frequency (RF) micro-antenna for nitrogen vacancy (NV) center spin manipulation is directly fabricated onto the probe making the design

Read more

Summary

Introduction

Scanning probe microscopy using nitrogen vacancy (NV) centers in diamond has become a versatile tool with applications in physics, chemistry, life sciences, and earth and planetary sciences.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.