Abstract

The 3D data collected using state-of-the-art algorithms often suffers from various problems, such as incompletion and inaccuracy. Using temporal information has been proven effective for improving the reconstruction quality; for example, KinectFusion [21] shows significant improvements for static scenes. In this work, we present a system that uses commodity depth and color cameras, such as Microsoft Kinects, to fuse the 3D data captured over time for dynamic objects to build a complete and accurate model, and then tracks the model to match later observations. The key ingredients of our system include a nonrigid matching algorithm that aligns 3D observations of dynamic objects by using both geometry and texture measurements, and a volumetric fusion algorithm that fuses noisy 3D data. We demonstrate that the quality of the model improves dramatically by fusing a sequence of noisy and incomplete depth data of human and that by deforming this fused model to later observations, noise-and-hole-free 3D models are generated for the human moving freely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.