Abstract
In light sheet fluorescence microscopy optical sectioning is achieved by illuminating the sample orthogonally to the detection pathway with a thin, focused sheet of light. However, light scattering within the sample often deteriorates the optical sectioning effect. Here, we demonstrate that contrast and degree of confocality can greatly be increased by combining scanned light sheet fluorescence excitation and confocal slit detection. A high frame rate was achieved by using the "rolling shutter" of a scientific CMOS camera as a slit detector. Synchronizing the "rolling shutter" with the scanned illumination beam results in confocal line detection. Acquiring image data with selective plane illumination minimizes photo-damage while simultaneously enhancing contrast, optical sectioning and signal-to-noise ratio. Thus the imaging principle presented here merges the benefits of scanned light sheet microscopy and line-scanning confocal imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.