Abstract

Radio-frequency ablation (RFA) is used to locally disrupt electrical propagation in myocardium and treat arrhythmias, and direct visualization of ablation lesions by acoustic radiation force methods may benefit RFA procedures. This paper compares four imaging modalities, B-mode, acoustic radiation force impulse (ARFI), single-track-location shear wave elasticity imaging (STL-SWEI), and multiple-track-location shear wave elasticity imaging (MTL-SWEI), in their ability to resolve RFA lesions in four ex vivo experiments. Ablation lesions are shown to be marked by at least a local halving of ARFI displacements and doubling of shear wave speeds. In a controlled ablation of ex vivo porcine and canine cardiac tissue, STL-SWEI and ARFI are shown to have a similar CNR, better than MTL-SWEI and B-mode. The SWEI modalities are demonstrated to have improved imaging of distal lesion boundaries. Gaps smaller than 5 mm are visualized in ablation lines made of discretely spaced ablations, and complex structures are reconstructed through depth in an "x" ablation experiment. Scans of suspended atria show increased noise, but successfully visualize ablations in ARFI, MTL-SWEI, and STL-SWEI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.