Abstract

The microstructural evolution and elevated temperature tensile properties of Ti-6.6Al-5.2Sn-1.8Zr-(0~3.8)Sc (wt%) alloys have been investigated. The Sc-added alloys showed improved yield strength at 650°C and 750°C and with the elongation above 10%. Minor addition of Sc was found to significantly reduce the as-cast grain size. Higher amount of Sc additions resulted in the formation of high density of Sc-oxide, which causes the high strength at elevated temperatures and the reduction of ductility. High density of α2-Ti3Al fine precipitates with an average size of about 20 nm were observed inside equiaxed primary α (αp) grains in the Sc-free or minor Sc added alloys. However, precipitation free zone (PFZ) also formed in those alloys, where grain boundaries are free from any precipitates. Higher Sc addition was found to hinder the formation of PFZ and α2–precipitates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.