Abstract

This article provides a thermal analysis of scan welding, as a redesign of classical joining methods, employing computer technology to ensure the composite morphologic, material and mechanical integrity of the joint. This is obtained by real-time control of the welding temperature field by a proper dynamic heat input distribution on the weld surface. This distribution is implemented in scan welding by a single torch, sweeping the joint surface by a controlled reciprocating motion, and power adjusted by feedback of infrared temperature measurements in-process. An off-line numerical simulation of the thermal field in scan welding is established, as well as a linearized multivariable model with real-time parameter identification. An adaptive thermal control scheme is thus implemented and validated both computationally and experimentally on a robotic Gas-Tungsten Arc Welding setup. The resulting productivity and quality features of scan welding are comparatively analyzed in terms of material structure and properties of the joint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call