Abstract

Three-dimensional (3D) characterization provides opportunities for understanding processing-structure relationships in additively manufactured (AM) materials. Bulk samples of Inconel 718 were fabricated via electron beam melting (EBM) in order to study microstructural development as a function of energy input and beam scan strategy. TriBeam tomography of bulk Inconel 718 microstructures built under steady-state growth conditions reveals the sensitivity of microstructure formation and evolution to machine process parameters. In this study, samples manufactured using a narrow range of energy input per unit build area result in varied grain morphologies and crystallographic textures. Using TRUCHAS, a thermal simulation software, the thermal history of bulk scan strategies was predicted, and combined with a calibrated microstructure-processing map to accurately predict bulk grain morphologies. The solidification parameters and the 3D measured nucleation density are used to predict the transition between columnar and equiaxed grain morphologies, providing a process map to guide AM parameter choices to locally control as-printed microstructure. A two-dimensional metric for characterizing bulk grain morphology was also found to agree well with predictions from the process map calibrated by 3D data. Combined with 3D tomography and thermal modelling, the physics of structure development were understood at a new level of detail with respect to the competing processes of grain nucleation and epitaxial growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call