Abstract

The detection of local genomic signals using high-throughput DNA sequencing data can be cast as a problem of scanning a Poisson random field for local changes in the rate of the process. We propose a likelihood-based framework for such scans, and derive formulas for false positive rate control and power calculations. The framework can also accommodate modified processes that involve overdispersion. As a specific, detailed example, we consider the detection of insertions and deletions by paired-end DNA-sequencing. We propose several statistics for this problem, compare their power under current experimental designs, and illustrate their application on an Illumina Platinum Genomes data set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.