Abstract

Accurate segmentation of hepatic vessel is significant for the surgeons to design the preoperative planning of liver surgery. In this paper, a sequence-based context-aware association network (SCAN) is designed for hepatic vessel segmentation, in which three schemes are incorporated to simultaneously extract the 2D features of hepatic vessels and capture the correlations between adjacent CT slices. The two schemes of slice-level attention module and graph association module are designed to bridge feature gaps between the encoder and the decoder in the low- and high-dimensional spaces. The region-edge constrained loss is designed to well optimize the proposed SCAN, which integrates cross-entropy loss, dice loss, and edge-constrained loss. Experimental results indicate that the proposed SCAN is superior to several existing deep learning frameworks, in terms of 0.845 DSC, 0.856 precision, 0.866 sensitivity, and 0.861 F1-score.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.