Abstract

To evaluate interscan reproducibility of both vessel morphology and tissue composition measurements of carotid atherosclerosis using a fast, optimized, 3T multicontrast protocol. A total of 20 patients with carotid stenosis >15% identified by duplex ultrasound were recruited for two independent 3T MRI (Philips) scans within one month. A multicontrast protocol including five MR sequences was applied: TOF, T1-/T2-/PD-weighted and magnetization-prepared rapid acquisition gradient-echo (MP-RAGE). Carotid artery morphology (wall volume, lumen volume, total vessel volume, normalized wall index, and mean/maximum wall thickness) and plaque component size (lipid rich/necrotic core, calcification, and hemorrhage) were measured over two time points. After exclusion of images with poor image quality, 257 matched locations from 18 subjects were available for analysis. For the quantitative carotid morphology measurements, coefficient of variation (CV) ranged from 2% to 15% and intraclass correlation coefficient (ICC) ranged from 0.87 to 0.99. Except for maximum wall thickness (ICC = 0.87), all ICC were larger than 0.90. For the quantitative plaque composition measurements, the ICC of the volume and relative content of lipid rich/necrotic core and calcification were larger than 0.90 with CV ranging from 22% to 32%. The results from the multicontrast high-resolution 3T MR study show high reliability for carotid morphology and plaque component measurements. 3T MRI is a reliable tool for longitudinal clinical trials, with shorter scan time compared to 1.5T.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.