Abstract

Domain Adaptive Object Detection (DAOD) transfers an object detector from the labeled source domain to a novel unlabelled target domain. Recent advances bridge the domain gap by aligning category-agnostic feature distribution and minimizing the domain discrepancy for adapting semantic distribution. Though great success, these methods model domain discrepancy with prototypes within a batch, yielding a biased estimation of domain-level statistics. Moreover, the category-agnostic alignment leads to the disagreement of the cross-domain semantic distribution with inevitable classification errors. To address these two issues, we propose an enhanced Semantic Conditioned AdaptatioN (SCAN++) framework, which leverages unbiased semantics for DAOD. Specifically, in the source domain, we design the conditional kernel to sample Pixel of Interests (PoIs), and aggregate PoIs with a cross-image graph to estimate an unbiased semantic sequence. Conditioned on the semantic sequence, we further update the parameter of the conditional kernel in a semantic conditioned manifestation module, and establish a novel conditional graph in the target domain to model unlabeled semantics. After modeling the semantic distribution in both domains, we integrate the conditional kernel into adversarial alignment to achieve semantic-aware adaptation in a Conditional Kernel guided Alignment (CKA) module. Meanwhile, the Semantic Sequence guided Transport (SST) module is proposed to transfer reliable semantic knowledge to the target domain through solving the cross-domain Optimal Transport (OT) assignment, achieving unbiased adaptation at the semantic level. Comprehensive experiments on four adaptation scenarios demonstrate that SCAN++ achieves state-of-the-art results. The code is available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/CityU-AIM-Group/SCAN/tree/SCAN++</uri> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.