Abstract

The scalp distributions of human auditory evoked potentials (AEPs) between 20 and 250 msec were investigated using non-cephalic reference recordings. AEPs to binaural click stimuli were recorded simulataneously from 20 scalp locations over the right hemisphere in 11 subjects. Computer-generated isovoltage topographic maps at high temporal resolution were used to assess the stability of AEP scalp distributions over time and relate them to major peaks in the AEP wave forms. For potentials between 20 and 60 msec, the results demonstrate a stable scalp distribution of dipolar form that is consistent with sources in primary auditory cortex on the superior temporal plane near the temporoparietal junction. For potentials between 60 and 250 msec, the results demonstrate changes in AEP morphology across electrode locations and changes in scalp distribution over time that lead to two major conclusions. First, AEPs in this latency period are generated by multiple sources which partially overlap in time. Second, one or more regions of auditory cortex contribute significantly to AEPs in this period. Additional data are needed to determine the relative contribution of auditory cortex sources on the superior temporal plane and the lateral temporal surface and to identify AEP sources outside the temporal lobe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.