Abstract

BackgroundAndrogenetic alopecia (AGA) is the most common type of hair loss in men. Its prevalence increases with advancing age. Characteristics of hair loss in male AGA reveal the possibility of different biophysical and physiological profiles between androgen-sensitive (vertex) and androgen-insensitive (occipital) scalps. However, these variations have not been well investigated.ObjectiveWe aimed to evaluate and compare scalp biophysical and physiological characteristics in male AGA patients and healthy controls.MethodsScalp biophysiological profiles were evaluated by non-invasive measuring techniques, including skin surface lipids (SSL), transepidermal water loss (TEWL), and stratum corneum hydration (SCH) on both vertex and occipital areas. Values were compared between scalp areas and study groups. Participants with AGA were further categorized based on disease severity (Hamilton–Norwood classification) for subgroup analyses. Correlation coefficients were evaluated to determine the effects of AGA severity and age on each functional parameter.ResultsParticipants were 31 AGA subjects and 31 healthy controls. The vertex scalp of AGA patients had significantly higher SSL (p = 0.03) and lower SCH (p = 0.02) compared to the occipital scalp. TEWL was not significantly different (p = 0.31). AGA group SSL showed a positive correlation with severity of hair loss (r = 0.61, p = 0.03). When compared to controls, the AGA group vertex scalp had significantly higher SSL (p = 0.03) and lower TEWL (p < 0.001). The occipital area showed no statistically significant differences.ConclusionMale AGA presents with different biophysical and physiological characteristics in androgen-sensitive and androgen-insensitive areas, and with further differences from controls. These findings could direct further research and aid in the development of optimal hair and scalp treatments to improve scalp functional profiles in particular patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.