Abstract

Seminal animal studies demonstrated the role of sleep oscillations such as cortical slow waves, thalamocortical spindles, and hippocampal ripples in memory consolidation. In humans, whether ripples are involved in sleep-related memory processes is less clear. Here, we explored the interactions between sleep oscillations (measured as traits) and general episodic memory abilities in 26 adults with drug-resistant temporal lobe epilepsy who performed scalp-intracranial electroencephalographic recordings and neuropsychological testing, including two analogous hippocampal-dependent verbal and nonverbal memory tasks. We explored the relationships between hemispheric scalp (spindles, slow waves) and hippocampal physiological and pathological oscillations (spindles, slow waves, ripples, and epileptic spikes) and material-specific memory function. To differentiate physiological from pathological ripples, we used multiple unbiased data-driven clustering approaches. At the individual level, we found material-specific cerebral lateralization effects (left-verbal memory, right-nonverbal memory) for all scalp spindles (rs > 0.51, ps < 0.01) and fast spindles (rs > 0.61, ps < 0.002). Hippocampal epileptic spikes and short pathological ripples, but not physiological oscillations, were negatively (rs > -0.59, ps < 0.01) associated with verbal learning and retention scores, with left lateralizing and antero-posterior effects. However, data-driven clustering failed to separate the ripple events into defined clusters. Correlation analyses with the resulting clusters revealed no meaningful or significant associations with the memory scores. Our results corroborate the role of scalp spindles in memory processes in patients with drug-resistant temporal lobe epilepsy. Yet, physiological and pathological ripples were not separable when using data-driven clustering, and thus our findings do not provide support for a role of sleep ripples as trait-like characteristics of general memory abilities in epilepsy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call