Abstract
Piezoelectric micromachined ultrasonic transducers (PMUTs) have been widely applied in distance sensing applications. However, the rapid movement of miniature robots in complex environments necessitates higher ranging capabilities from sensors, making the enhancement of PMUT sensing distance critically important. In this paper, a scandium-doped aluminum nitride (ScAlN) PMUT based on a flexurally suspended membrane is proposed. Unlike the traditional fully clamped design, the PMUT incorporates a partially clamped membrane, thereby extending the vibration displacement and enhancing the output sound pressure. Experimental results demonstrate that at a resonant frequency of 78 kHz, a single PMUT generates a sound pressure level (SPL) of 112.2 dB at a distance of 10 mm and achieves a high receiving sensitivity of 12.3 mV/Pa. Distance testing reveals that a single PMUT equipped with a horn can achieve a record-breaking distance sensing range of 11.2 m when used alongside a device capable of simultaneously transmitting and receiving ultrasound signals. This achievement is significant for miniaturized and integrated applications that utilize ultrasound for long-range target detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.