Abstract
Two-step growth technology to successfully synthesize scallion-root-shaped GaN nanorods was presented in this paper. This growth method is applicable to continuous synthesis a large number of single-crystalline GaN nanorods with a high purity at a low cost. X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) are employed to characterize the structure, composition and morphology of as-grown GaN nanorods. The results show that the obtained nanorods are single-crystal GaN with hexagonal wurtzite structure and have a relatively high purity. The diameter of the nanorods is about 500nm with length up to several tens of micrometers. The representative photoluminescence spectra (PL) measured at room temperature exhibited a strong and broad emission peak at 388nm corresponding to the strong-band-emission in wurtzite GaN, indicating that the nanorods have a good emission property. The growth mechanism is also briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.