Abstract

Single-cell RNA sequencing (scRNA-seq) data contain rich information at the gene, transcript, and nucleotide levels. Most analyses of scRNA-seq have focused on gene expression profiles, and it remains challenging to extract nucleotide variants and isoform-specific information. Here, we present scAllele, an integrative approach that detects single-nucleotide variants, insertions, deletions, and their allelic linkage with splicing patterns in scRNA-seq. We demonstrate that scAllele achieves better performance in identifying nucleotide variants than other commonly used tools. In addition, the read-specific variant calls by scAllele enables allele-specific splicing analysis, a unique feature not afforded by other methods. Applied to a lung cancer scRNA-seq dataset, scAllele identified variants with strong allelic linkage to alternative splicing, some of which are cancer specific and enriched in cancer-relevant pathways. scAllele represents a versatile tool to uncover multilayer information and previously unidentified biological insights from scRNA-seq data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.