Abstract

The benefit of microorganisms to humans, animals, insects and plants is increasingly recognized, with intensified microbial endophytes research indicative of this realization. In the agriculture industry, the benefits are tremendous to move towards sustainable crop production and minimize or circumvent the use of chemical fertilizers and pesticides. The research leading to the identification of potential plant endophytes is long and arduous and for many researchers the challenge is ultimately in scale-up production. While many of the larger agriculture and food industries have their own scale-up and manufacturing facilities, for many in academia and start-up companies the next steps towards production have been a stumbling block due to lack of information and understanding of the processes involved in scale-up fermentation. This review provides an overview of the fermentation process from shake flask cultures to scale-up and the manufacturing steps involved such as process development optimization (PDO), process hazard analysis (PHA), pre-, in- and post-production (PIP) challenges and finally the preparation of a technology transfer package (TTP) to transition the PDO to manufacturing. The focus is on submerged liquid fermentation (SLF) and plant endophytes production by providing original examples of fungal and bacterial endophytes, plant growth promoting Penicillium sp. and Streptomyces sp. bioinoculants, respectively. We also discuss the concepts, challenges and future perspectives of the scale-up microbial endophyte process technology based on the industrial and biosafety research platform for advancing a massive production of next-generation biologicals in bioreactors.

Highlights

  • The pioneering research leading to the discovery of beneficial group of microorganisms is a long and arduous process, often a culmination of over decades’ long work

  • In this review we focus on the scale-up challenges per se from the point of view transitioning the work done in the laboratory to a robust production, i.e. Process Development Optimization (PDO) (Fig. 1), based on our experience and perspectives for plant endophytes

  • It is vital to design a cutting edge scaleup fermentation platform allowing predictable cultivation and success in microbial bioprocessing, large biomass production, and use of quality bioinoculants for biobased industry’s progress and profits (Rouphael and Colla 2020). It is of vital importance for modern agriculture, food, and nutraceutical sectors to continue feeding the expanding world population

Read more

Summary

Introduction

The pioneering research leading to the discovery of beneficial group of microorganisms is a long and arduous process, often a culmination of over decades’ long work. In this review we focus on the scale-up challenges per se from the point of view transitioning the work done in the laboratory to a robust production, i.e. Process Development Optimization (PDO) (Fig. 1), based on our experience and perspectives for plant endophytes.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call