Abstract

We study the asymptotic behavior of solutions for the semilinear damped wave equation with variable coefficients. We prove that if the damping is effective, and the nonlinearity and other lower order terms can be regarded as perturbations, then the solution is approximated by the scaled Gaussian of the corresponding linear parabolic problem. The proof is based on the scaling variables and energy estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.