Abstract
The last two decades have witnessed tremendous progress in the development of microfluidic chips that generate micrometer- and nanometer-scale materials. These chips allow precise control over composition, structure, and particle uniformity not achievable using conventional methods. These microfluidic-generated materials have demonstrated enormous potential for applications in medicine, agriculture, food processing, acoustic, and optical meta-materials, and more. However, because the basis of these chips' performance is their precise control of fluid flows at the micrometer scale, their operation is limited to the inherently low throughputs dictated by the physics of multiphasic flows in micro-channels. This limitation on throughput results in material production rates that are too low for most practical applications. In recent years, however, significant progress has been made to tackle this challenge by designing microchip architectures that incorporate multiple microfluidic devices onto single chips. These devices can be operated in parallel to increase throughput while retaining the benefits of microfluidic particle generation. In this review, we will highlight recent work in this area and share our perspective on the key unsolved challenges and opportunities in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.