Abstract

Blockchain, the underlying technology powering the Bitcoin cryptocurrency, is a distributed ledger that creates a distributed consensus on a history of transactions. Cryptocurrency transaction verification takes substantially longer than it does for conventional digital payment systems. Despite blockchain’s appealing benefits, one of its main drawbacks is scalability. Designing a solution that delivers a quicker proof of work is one method for increasing scalability or the rate at which transactions are processed. In this paper, we suggest a solution based on parallel mining rather than solo mining to prevent more than two miners from contributing an equal amount of effort to solving a single block. Moreover, we propose the idea of automatically selecting the optimal manager over all miners by using the particle swarm optimization (PSO) algorithm. This process solves many problems of blockchain scalability and makes the system more scalable by decreasing the waiting time if the manager fails to respond. Additionally, the proposed model includes the process of a reward system and the distribution of work. In this work, we propose the particle swarm optimization proof of work (PSO-POW) model. Three scenarios have been tested including solo mining, parallel mining without using the PSO process, and parallel mining using the PSO process (PSO-POW model) to ensure the power and robustness of the proposed model. This model has been tested using a range of case situations by adjusting the difficulty level and the number of peers. It has been implemented in a test environment that has all the qualities required to perform proof of work for Bitcoin. A comparison between three different scenarios has been constructed against difficulty levels and the number of peers. Local experimental assessments were carried out, and the findings show that the suggested strategy is workable, solves the scalability problems, and enhances the overall performance of the blockchain network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.