Abstract
Abstract. The United States National Hydrography Dataset (NHD) is a database of vector features representing the surface water features for the country. The NHD was originally compiled from hydrographic content on U.S. Geological Survey topographic maps but is being updated with higher quality feature representations through flow-routing techniques that derive hydrography from high-resolution elevation data. However, deriving hydrography through flow-routing methods is a complex process that needs to be tailored to different geographic conditions, which can lead to varying solutions. To address this problem, this paper evaluates automated deep learning and its transferability to extract hydrography from interferometric synthetic aperture radar (IfSAR) elevation data spanning a range of geographic conditions in Alaska.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.