Abstract

By exploiting the relationship between probability density and the differential geometry structure of received data and geodesic distance, the recently proposed information geometry (IG) method can provide higher accuracy and resolution ability for direction of arrival (DOA) estimation than many existing methods. However, its performance is not robust even for high signal-to-noise ratio. To have a deep understanding of its unstable performance, a theoretical analysis of the IG method is presented by deriving the relationship between the cost function and the number of array elements, powers and DOAs of source signals, and noise power. Then, to make better use of the nonlinear and super resolution property of the cost function, a Scaling TRansform based INformation Geometry (STRING) method is proposed, which simply scales the array received data or its covariance matrix by a real number. However, the expression for the optimum value of the scalar is complicated and related to the unknown signal DOAs and powers. Hence, a decision criterion and a simple search based procedure are developed, guaranteeing a robust performance. As demonstrated by computer simulations, the proposed STRING method has the best and robust angle resolution performance compared with many existing high resolution methods and even outperforms the classic Cramer–Rao bound, although at the cost of a bias in the estimation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.