Abstract

The classical anisotropic Heisenberg chain (with Jperpendicular to /J/sub ///= alpha ) is treated by a simple scaling theory valid in the low-temperature limit (K identical to J/sub ////KBT>>1) for any alpha between 0 (Ising) and 1 (isotropic case). The correlation lengths are given in terms of universal single-variable scaling functions Phi /sub //, perpendicular to /: 1/ xi /sub //, perpendicular to /=(cosh-1(1/ alpha )) Phi /sub //, perpendicular to /(K(1- alpha 2)12/+F( alpha )). The term F( alpha ), given in the text, is negligible except when alpha approximately 0. The asymptotic forms of the functions are: Phi /sub ///(x) approximately Phi perpendicular to (x) approximately A/x for x >1 (where A, B and C are constants), giving the characteristic 'Heisenberg-like' and 'Ising-like' behaviours occurring on either side of the crossover which takes place at x approximately 1. Exact critical and crossover exponents are deduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.