Abstract

AbstractWe investigate the use of artificially increased ion and electron kinetic scales in global plasma simulations. We argue that as long as the global and ion inertial scales remain well separated, (1) the overall global solution is not strongly sensitive to the value of the ion inertial scale, while (2) the ion inertial scale dynamics will also be similar to the original system, but it occurs at a larger spatial scale, and (3) structures at intermediate scales, such as magnetic islands, grow in a self‐similar manner. To investigate the validity and limitations of our scaling hypotheses, we carry out many simulations of a two‐dimensional magnetosphere with the magnetohydrodynamics with embedded particle‐in‐cell (MHD‐EPIC) model. The PIC model covers the dayside reconnection site. The simulation results confirm that the hypotheses are true as long as the increased ion inertial length remains less than about 5% of the magnetopause standoff distance. Since the theoretical arguments are general, we expect these results to carry over to three dimensions. The computational cost is reduced by the third and fourth powers of the scaling factor in two‐ and three‐dimensional simulations, respectively, which can be many orders of magnitude. The present results suggest that global simulations that resolve kinetic scales for reconnection are feasible. This is a crucial step for applications to the magnetospheres of Earth, Saturn, and Jupiter and to the solar corona.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call