Abstract

In the current paper, an investigation of the supersonic flow effect on shockwave generation and diesel spray penetration scaling has been performed. For this purpose, spray visualization tests have been carried out in a constant-pressure chamber at room temperature using shadowgraphy technique. Two working gases have been used: nitrogen, with similar thermodynamic characteristics to the engine environment, and sulfur hexafluoride, aimed at producing supersonic conditions at moderate injection pressure values. A total of 60 operating points, including different nozzle geometries, injection pressures and chamber densities have been studied. From the visualization study, two different kinds of shockwaves have been detected: normal or frontal, for moderate spray tip Mach (between 1 and 1.5); and oblique, when the Mach is higher than 1.5. The penetration results show that, for the same injection conditions in terms of injection pressure and chamber density, the spray propagation is equal for SF6 and N2 when the spray is on subsonic conditions, while penetration is higher for SF6 when supersonic velocity is reached. This behavior has been related to the density gradient appearing across the shockwave. A new methodology to extrapolate supersonic penetration from the well-known subsonic penetration law has been proposed, showing good agreement with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.