Abstract

We continue our exploration of the wiggly generalisation of the Velocity-Dependent One Scale Model for cosmic strings, through the study of its allowed asymptotic scaling solutions. We extend the work of a previous paper [Almeida $\&$ Martins, Phys. Rev. D 104 (2021) 043524] by considering the more comprehensive case of a time-varying coarse-graining scale for the string wiggles. The modeling of the evolution of the network therefore relies on three main mechanisms: Hubble expansion, energy transfer mechanisms (e.g., the production of loops and wiggles) and the choice of the scale at which wiggles are coarse-grained. We analyse the role of each of them on the overall behaviour of the network, and thus in the allowed scaling solutions. In Minkowski space, we find that linear scaling, previously observed in numerical simulations without expansion, is not possible with a changing averaging scale. For expanding universes, we find that the three broad classes of scaling solutions -- with the wiggliness disappearing, reaching scaling, or growing -- still exist but are differently impacted by the time evolution of the coarse-graining scale. Nambu-Goto type solutions (without wiggles) are unaffected, growing wiggliness solutions are trivially generalized, while for solutions where wiggliness reaches scaling the expansion rate for which the solution exists is decreased with respect to the one for a fixed coarse-graining scale. Finally, we also show that the inclusion of a time-varying coarse-graining scale allows, in principle, for additional scaling solutions which, although mathematically valid, are not physical. Overall, our mapping of the landscape of the allowed scaling solutions of the wiggly Velocity-Dependent One Scale Model paves the way for the detailed testing of the model, to be done by forthcoming high-resolution field theory and Nambu-Goto simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call