Abstract

In this paper we consider cosmological scaling solutions in general relativity coupled to scalar fields with a non-trivial moduli space metric. We discover that the scaling property of the cosmology is synonymous with the scalar fields tracing out a particular class of geodesics in moduli space—those which are constructed as integral curves of the gradient of the log of the potential. Given a generic scalar potential we explicitly construct a moduli metric that allows scaling solutions, and we show the converse—how one can construct a potential that allows scaling once the moduli metric is known.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.