Abstract

We present a photometric analysis of a large sample of early-type galaxies in 16 nearby groups, imaged with the Wide-Field Camera on the Isaac Newton Telescope. Using a two-dimensional surface brightness decomposition routine, we fit Sersic (r1/n) and exponential models to their bulge and disc components, respectively. Dividing the galaxies into three subsamples according to the X-ray luminosities of their parent groups, we compare their photometric properties. Galaxies in X-ray luminous groups tend to be larger and more luminous than those in groups with undetected or low X-ray luminosities, but no significant differences in n are seen. Both normal and dwarf elliptical galaxies in the central regions of groups are found to have cuspier profiles than their counterparts in group outskirts. Structural differences between dwarf and normal elliptical galaxies are apparent in terms of an offset between their ‘photometric planes’ in the space of n, re and μ0. Dwarf ellipticals are found to populate a surface, with remarkably low scatter, in this space with significant curvature, somewhat similar to the surfaces of constant entropy proposed by Marquez et al. Normal ellipticals are offset from this distribution in a direction of higher specific entropy. This may indicate that the two populations are distinguished by the action of galaxy merging on larger galaxies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.