Abstract

We study the scaling properties of the statistics of the work done on a generic many-body system at a quantum phase transition of any order and type, arising from quenches of a driving control parameter. For this purpose we exploit a dynamic finite-size scaling framework. Namely, we put forward the existence of a nontrivial finite-size scaling limit for the work distribution, defined as the large-size limit when appropriate scaling variables are kept fixed. The corresponding scaling behaviors are thoroughly verified by means of analytical and numerical calculations in two paradigmatic many-body systems as the quantum Ising model and the Bose–Hubbard model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call