Abstract
A detailed profile of exascale applications helps to understand the computation, communication and memory requirements for exascale systems and provides the insight necessary for fine-tuning the computing architecture. Obtaining such a profile is challenging as exascale systems will process unprecedented amounts of data. Profiling applications at the target scale would require the exascale machine itself. In this work we propose a methodology to extrapolate the exascale profile from experimental observations over datasets feasible for today’s machines. Extrapolation models are carefully selected by means of statistical techniques and a high-level complexity analysis is included in the selection process to speed up the learning phase and to improve the accuracy of the final model. We extrapolate run-time properties of the target applications including information about the instruction mix, memory access pattern, instruction-level parallelism, and communication requirements. Compared to state-of-the-art techniques, the proposed methodology reduces the prediction error by an order of magnitude on the instruction count and improves the accuracy by up to 1.3\(\times \) for the memory access pattern, and by more than 2\(\times \) for the communication requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.