Abstract

Scaling properties of mortar crack surfaces are studied from mode I fracture specimens of six different sizes. Fracture surfaces initiated from a straight notch exhibit an anomalous dynamic scaling which involves two independent roughness indices: the universal local roughness exponent ζloc ≈ 0.8 and the global roughness exponent, estimated to ζ ≃ 1.35. We show that there exists a linear relationship between the specimen size and the maximum self-affine correlation length inducing a size effect on the roughness magnitude at saturation and this especially for the smallest length scales. Finally, we argue that anomalous roughening could be an inheritance of the changes in long range elastic interactions which take place in the fracture process zone of quasibrittle materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.