Abstract

We present the scaling properties of Lambda, Xi, and Omega in midrapidity Au+Au collisions at the Brookhaven National Laboratory Relativistic Heavy Ion Collider at sqrt[s_{NN}]=200 GeV. The yield of multistrange baryons per participant nucleon increases from peripheral to central collisions more rapidly than that of Lambda, indicating an increase of the strange-quark density of the matter produced. The strange phase-space occupancy factor gamma_{s} approaches unity for the most central collisions. Moreover, the nuclear modification factors of p, Lambda, and Xi are consistent with each other for 2<p_{T}<5 GeV/c in agreement with a scenario of hadron formation from constituent quark degrees of freedom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call