Abstract
In nonlinear disordered Hamiltonian lattices, where there are no propagating phonons, the spreading of energy is of subdiffusive nature. Recently, the universality class of the subdiffusive spreading according to the nonlinear diffusion equation (NDE) has been suggested and checked for one-dimensional lattices. Here, we apply this approach to two-dimensional strongly nonlinear lattices and find a nice agreement of the scaling predicted from the NDE with the spreading results from extensive numerical studies. Moreover, we show that the scaling works also for regular lattices with strongly nonlinear coupling, for which the scaling exponent is estimated analytically. This shows that the process of chaotic diffusion in such lattices does not require disorder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.