Abstract

AbstractWe determine absolute reactivities for dissociation at low coordinated Pt sites. Two curved Pt(111) single‐crystal surfaces allow us to probe either straight or highly kinked step edges with molecules impinging at a low impact energy. A model extracts the average reactivity of inner and outer kink atoms, which is compared to the reactivity of straight A‐ and B‐type steps. Local surface coordination numbers do not adequately capture reactivity trends for H2 dissociation. We utilize the increase of reactivity with step density to determine the area over which a step causes increased dissociation. This step‐type specific reactive area extends beyond the step edge onto the (111) terrace. It defines the reaction cross‐section for H2 dissociation at the step, bypassing assumptions about contributions of individual types of surface atoms. Our results stress the non‐local nature of H2 interaction with a surface and provide insight into reactivity differences for nearly identical step sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.