Abstract
The log-normal type of turbulence energy spectral function, derived from the maximum entropy principle, is shown to be parameterizable in terms of root turbulence variables including the Reynolds number. The spectral function is first compared with a number of experimental data sets, showing a very close agreement across the entire energy and length (wavenumber) scales. The peak wavenumber (m) and the width parameter (C2) prescribe the spectral location and broadening, respectively, when the Reynolds number increases, where C2 has ∼1/Rem dependence. The energy scale is adjusted with a multiplicative factor. In this perspective, the inertial scaling from k−3 to k−5/3 when the flow transitions from two- to three-dimensions is explained as the increase in spectral width since the range of scales varies as Re1∕2 and Re3/4 for two and three-dimensional turbulence, respectively. Energy spectra at various locations in channel flows are also reproduced using the same function, indicating applicability wherever local equilibrium is achieved. Therefore, based on a small number of scaling parameters the full energy spectra can be prescribed using the maximum-entropy formalism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.