Abstract

The present paper treats the large Reynolds number scaling of coherent structures in stably stratified flows sheared between two horizontally placed walls. Three-dimensional steady solutions are used to confirm the theoretical scaling. For small values of the Richardson number, the previously known scaling based on the vortex–wave interaction/self-sustaining process is found to give excellent predictions of the numerical results. When the Richardson number is increased, the maximum size of the vortices is limited by the Ozmidov scale. The largest possible Richardson number to sustain the vortices is predicted to be of order unity when the typical length scale of the vortices reaches the Kolmogorov scale. The minimum-scale vortices are governed by unit Reynolds number Navier–Stokes equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call