Abstract

The excitability of neuronal membranes is crucially modulated by T-type Ca2+ channels (ICaT) due to their low threshold of activation. ICaT inactivates steeply at potentials close to the resting membrane potential. Therefore, the availability of ICaT following changes in membrane potential depends on the time course of the onset of inactivation as well as on the time course of recovery from inactivation.It was previously shown that the time course of recovery from inactivation depends on the duration of the conditioning pulse in cloned T-type Ca2+ channel subunits (Cav3.1-Cav3.3(Uebachs et al., 2006)). This provides a potential mechanism for an intrinsic form of short term plasticity. Here, we address the question, whether this mechanism results in altered availability of ICaT following physiological changes in membrane potential. We found that the recovery of ICaT during an IPSP depends on the duration of a preceding depolarized period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.