Abstract

The paper represents an extended text of a lecture presenting a review of recent results on scaling of failure in structures made of quasibrittle materials, characterized by a large fracture process zone, and examining the question of possible role of the fractal nature of crack surfaces in the scaling. The problem of scaling is approached through dimensional analysis, the laws of thermodynamics and asymptotic matching. Large-size and small-size asymptotic expansions of the size effect on the nominal strength of structures are given, for specimens with large notches (or traction-free cracks) as well as zero notches, and simple size effect formulas matching the required asymptotic properties are reported. The asymptotic analysis is carried out, in general, for fractal cracks, and the practically important case ofnonfractal crack propagation is acquired as a special case. Regarding the fractal nature of crack surfaces in quasibrittle materials, the conclusion is that it cannot play a signification role in fracture propagation and the observed size effect. The reason why Weibull statistical theory of random material strength does not explain the size effect in quasibrittle failures is explained. Finally, some recent applications to fracture simulation by particle models (discrete element method) and to the determination of size effect and fracture characteristics of carbon-epoxy composite laminates are briefly reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.