Abstract
The hearts of smaller mammals tend to operate at higher mass-specific mechanical work rates than those of larger mammals. The ultrastructural characteristics of the heart that allow for such variation in work rate are still largely unknown. We have used perfusion-fixation, transmission electron microscopy and stereology to assess the morphology and anatomical aerobic power density of the heart as a function of body mass across six species of wild African antelope differing by approximately 20-fold in body mass. The survival of wild antelope, as prey animals, depends on competent cardiovascular performance. We found that relative heart mass (gkg-1 body mass) decreases with body mass according to a power equation with an exponent of -0.12±0.07 (±95% confidence interval). Likewise, capillary length density (kmcm-3 of cardiomyocyte), mitochondrial volume density (fraction of cardiomyocyte) and mitochondrial inner membrane surface density (m2cm-3 of mitochondria) also decrease with body mass with exponents of -0.17±0.16, -0.06±0.05 and -0.07±0.05, respectively, trends likely to be associated with the greater mass-specific mechanical work rate of the heart in smaller antelope. Finally, we found proportionality between quantitative characteristics of a structure responsible for the delivery of oxygen (total capillary length) and those of a structure that ultimately uses that oxygen (total mitochondrial inner membrane surface area), which provides support for the economic principle of symmorphosis at the cellular level of the oxygen cascade in an aerobic organ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.