Abstract

Longitudinal and transverse velocity increments are measured both temporally and spatially using two X-wire probes in the intermediate region of a cylinder wake over Taylor microscale Reynolds numbers in the range of 100-300. The scaling exponents of both the spatial and temporal longitudinal velocity increments agree favorably with the predictions of Kolmogorov and She and Leveque. The scaling exponents of the transverse velocity increments are considerably smaller than those of the longitudinal ones, with the values for spatial transverse velocity increments being slightly larger than the temporal ones. The difference between the scaling exponents of the longitudinal and transverse velocity increments is examined against the refined similarity hypotheses for transverse velocity increments (RSHT) proposed by Chen It is found that the RSHT can account for the difference between the scaling exponents of the longitudinal and spatial transverse velocity increments at all Reynolds numbers considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.