Abstract

This contribution aims to improve existing scalings of the L-mode power decay length , especially for plasma configurations with strike points at the ITER-relevant location—closed vertical divertor targets. We propose 13 new scalings based on data from the tokamaks JET, EAST, MAST, Alcator C-mod and COMPASS, and validate them against the output of the 2D turbulence code HESEL. The analysis covers 500 divertor heat flux profiles (obtained by probes or IR cameras), measured in L-mode discharges with varying 12 global plasma parameters (all well predictable). We find that the two previously published scalings (Eich 2013 J. Nucl. Mat. 438 S72) and (Scarabosio 2013 J. Nucl. Mat. 438 S426), which were based on outer target data from AUG and JET, describe the JET, C-mod and COMPASS profiles well. This holds not only at the outer horizontal and vertical targets, but surprisingly also at the inner vertical targets. In contrast, EAST, HESEL and especially MAST data are poorly described by these two scalings. We therefore derive 13 new scalings, which account for 85–92 % of the measured variability across all five tokamaks. Although each of the scalings is based on a different parameter combination, their predictions for the ITER and COMPASS-Upgrade tokamaks are very similar. Just before the L-H transition in the ITER baseline scenario, the presented scalings predict values mm. For the COMPASS-Upgrade tokamak, all the scalings predict mm with a single exception of the scaling based on the stored plasma energy which predicts only 1.2 mm for both tokamaks. We encourage the reader to use as many of these scalings as possible, depending on available data. In attached plasma and using significant assumptions, our results imply steady-state surface-perpendicular heat flux around 10 MW/m2 for ITER, and 20 MW/m2 for COMPASS-Upgrade.

Highlights

  • General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights

  • We propose 13 new λoqmp scalings based on data from the tokamaks JET, EAST, MAST, Alcator C-mod and COMPASS, and validate them against the output of the 2D turbulence code HESEL

  • Each of the scalings is based on a different parameter combination, their predictions for the ITER and COMPASS-Upgrade tokamaks are very similar

Read more

Summary

Introduction

General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Mat. 438 S426), which were based on outer target data from AUG and JET, describe the JET, C-mod and COMPASS profiles well. This holds at the outer horizontal and vertical targets, but surprisingly at the inner vertical targets. Each of the scalings is based on a different parameter combination, their predictions for the ITER and COMPASS-Upgrade tokamaks are very similar. Just before the L-H transition in the ITER baseline scenario, the presented scalings predict values λoqmp = 3.0 ± 0.5 mm. For the COMPASS-Upgrade tokamak, all the scalings predict λoqmp = 2.1 ± 0.5 mm with a single exception of the scaling based on the stored plasma energy which predicts only 1.2 mm for both tokamaks. In attached plasma and using significant assumptions, our results imply steady-state surface-perpendicular heat flux around 10 MW/m2 for ITER, and 20 MW/m2 for COMPASS-Upgrade

Objectives
Findings
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.