Abstract

An experimental investigation into in-plane scaled Over-height Compact Tension (OCT) [45/90/−45/0]4s carbon/epoxy laminates was carried out to study the scaling of fracture response. The dimensions of the baseline specimens were scaled up and down by a factor of 2. Interrupted tests were carried out for specimens of each size in which the tests were stopped after certain load drops in order to study the failure mechanisms. X-ray Computed Tomography (CT) scanning was applied after the interrupted tests to examine the damage development and its effect on the fracture response. The test results showed that the scaling of the initial propagation of fracture follows Linear Elastic Fracture Mechanics (LEFM), but the development of the damage process zone differs with specimen sizes. The OCT specimens were found to be not large enough to generate a self-similar damage zone during propagation, and so no conclusions could be drawn regarding the R-curve effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.