Abstract
It is widely believed that elastic energy storage is more important in the locomotion of larger mammals. This is based on: (a) comparison of kangaroos with the smaller kangaroo rat; and (b) calculations that predict that the capacity for elastic energy storage relative to body mass increases with size. Here we argue that: (i) data from kangaroos and kangaroo rats cannot be generalized to other mammals; (ii) the elastic energy storage capacity relative to body mass is not indicative of the importance of elastic energy to an animal; and (iii) the contribution of elastic energy to the mechanical work of locomotion will not increase as rapidly with size as the mass-specific energy storage capacity, because larger mammals must do relatively more mechanical work per stride. We predict how the ratio of elastic energy storage to mechanical work will change with size in quadrupedal mammals by combining empirical scaling relationships from the literature. The results suggest that the percentage contribution of elastic energy to the mechanical work of locomotion decreases with size, so that elastic energy is more important in the locomotion of smaller mammals. This now needs to be tested experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.