Abstract

The volumetric method of ‘convex hulling’ has recently been put forward as a mass prediction technique for fossil vertebrates. Convex hulling involves the calculation of minimum convex hull volumes (vol CH) from the complete mounted skeletons of modern museum specimens, which are subsequently regressed against body mass (M b) to derive predictive equations for extinct species. The convex hulling technique has recently been applied to estimate body mass in giant sauropods and fossil ratites, however the biomechanical signal contained within vol CH has remained unclear. Specifically, when vol CH scaling departs from isometry in a group of vertebrates, how might this be interpreted? Here we derive predictive equations for primates, non-primate mammals and birds and compare the scaling behaviour of M b to vol CH between groups. We find predictive equations to be characterised by extremely high correlation coefficients (r 2 = 0.97–0.99) and low mean percentage prediction error (11–20%). Results suggest non-primate mammals scale body mass to vol CH isometrically (b = 0.92, 95%CI = 0.85–1.00, p = 0.08). Birds scale body mass to vol CH with negative allometry (b = 0.81, 95%CI = 0.70–0.91, p = 0.011) and apparent density (vol CH/M b) therefore decreases with mass (r 2 = 0.36, p<0.05). In contrast, primates scale body mass to vol CH with positive allometry (b = 1.07, 95%CI = 1.01–1.12, p = 0.05) and apparent density therefore increases with size (r 2 = 0.46, p = 0.025). We interpret such departures from isometry in the context of the ‘missing mass’ of soft tissues that are excluded from the convex hulling process. We conclude that the convex hulling technique can be justifiably applied to the fossil record when a large proportion of the skeleton is preserved. However we emphasise the need for future studies to quantify interspecific variation in the distribution of soft tissues such as muscle, integument and body fat.

Highlights

  • An animal’s form and function is bound by physical laws

  • For all the groups considered here, the phylogenetically uncorrected ordinary least squares (OLS) regression model provides a better fit to the data as indicated by lower Akaike Information Criterion (AIC) values for OLS models compared to Phylogenetic generalised least squares (PGLS) and OU models (Table 2)

  • We have demonstrated that minimal convex hull volume is an extremely good predictor of body mass in modern groups of non-primate mammals, primates and birds

Read more

Summary

Introduction

An animal’s form and function is bound by physical laws. They determine the strength of structures, the rate of heat transfer and the dynamics of locomotion [1], and their consequences are dependent upon the mass of the body on which they act. Common practice when estimating fossil body mass has been to take a skeletal dimension from modern species, such as femur circumference [2] or glenoid diameter [3], and use this value as the independent variable in a regression against body mass [4]. This method has been subject to considerable discussion in the literature and concerns have been raised regarding logarithmic transformation of the dataset [5], the choice of regression model [6] and the extrapolation of the model beyond the range of extant data [7]. When only fragmentary material is preserved, this remains the only available method for predicting body mass of extinct species

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.